EC
Engineering Classroom
by Himalay Sen

Exams

Prepare for your next test with our collection of exam-based practice sets and question banks designed for effective assessment and revision.

Board Questions

Access past board exam questions organized by year and subject to help you understand patterns, improve preparation, and boost your exam performance.

Math MCQ
241. |x-2|<3 হলে, m এবং n এর কোন মানের জন্য 11 <3x+5
m=1, n=10
m=2, n=20
m=3, n=30
m=4, n=40
ব্যাখ্যা: |x-2|<3 ⇒-3<x-2<3 =-1<x<5 [2 যোগ করে) =-3<3x15 13 দ্বারা গুণ করে] 2<3x+5<2015 যোগ করে) m<3x+5<n হলে m = 2 এবং n = 20
242. ভারসাম্য রক্ষা করতে নির্দেশিত স্থানে কত কেজি রাখতে হবে?
১২০
১৪০
১৬০
৮০
ব্যাখ্যা: বামদিকে ৭মিটার দূরত্বের জন্য ওজন ১০০ কেজি। ধরি, xkg ভর যুক্ত করতে হবে। প্রশ্নমতে, ১০০ × ৭ =x×৫ ⇒x= ১০০×৭ / ৫ =১৪০ kg
243. ∆ABC এর ∠A = 40° এবং ∠B = 80° । ∠C এর সমদ্বিখণ্ডক AB বাহুকে D বিন্দুতে ছেদ করলে ∠CDA = ?
110°
100°
90°
80°
ব্যাখ্যা:
244. √-8×√-2 = কত?
-4
4
4i
-4i
ব্যাখ্যা: √-8x-2=√8x√-1x√2x√-1 = 2√2xix√2xi =4×i²-414×i²]
245. কোন শর্তে log1a= 0 ?
a>0, a≠1
a≠0, a>1
a>0, a=1
a≠1,a<0
ব্যাখ্যা: log1a = 0 হবে যখন, a>0 এবং ≠1 (স্বতঃসিদ্ধ)।
246. নিচের কোনটি সঠিক নয়?
(A+B)=A.B
(A+B)=A+B
(A.B.C)=A+B+C
(A+B+C)=A.B.C
ব্যাখ্যা: বুলিয়ান ফাংশন সরলীকরণ করার জন্য ডি-মরগ্যান দুটি সূত্র আবিষ্কার করেন। দুই চলকের জন্য ডি-মরগ্যানের উপপাদ্য- ১. A+B= A.B २. A.B = A+B তিন চলকের ক্ষেত্রে ডি-মরগ্যানের উপপাদ্য- ১. A+B+C=A.B.C 2. A.B.C=A+B+C
247. নিচের কোনটি ১০০ এর ১ কমপ্লিমেন্ট?
১১১
১০১
০১১
০০১
ব্যাখ্যা: ১০০ এর ১-এর কমপ্লিমেন্ট ০১১। শূন্য এর পরিবর্তে ১ এবং ১ এর পরিবর্তে ০ বসিয়ে ১'এর কমপ্লিমেন্ট পাওয়া যায়।
248. cos(nπ/2) অনুক্রমটির চতুর্থ পদ। কোনটি?
-1
1
1/2
0
ব্যাখ্যা: ধারাটির চতুর্থ পদ =cos(4π/2) [:n=4] = cos 2π = cos 360° [: π = 180] = 1
249. ৬ সে.মি. ব্যাসার্ধ বিশিষ্ট বৃত্তের অন্তঃস্থ একটি সমবাহু ত্রিভুজের ক্ষেত্রফল-
২১√৩ বর্গ সেমি.
২৩√২ বর্গ সে.মি.
২৫√৩ বর্গ সে.মি.
২৭√৩ বর্গ সে.মি.
ব্যাখ্যা:
252. 6x2-7x-4 = 0 সমীকরণে মূলদ্বয়ের প্রকৃতি কোনটি?
বাস্তব ও সমান
বাস্তব ও অসমান
অবাস্তব
পূর্ণ বর্গ সংখ্যা
ব্যাখ্যা: 6x2-7x-4 = 0 সমীকরণটিকে ax² + bx + c = 0 সমীকরণের সাথে তুলনা করে পাই— a=6,b=-7 এবং c = -4 b2-4ac = (-7)2-4×6(-4) = 49+96 = 145 > 0 যেহেতু b² - 4ac > 0 তাই সমীকরণটির মূলদ্বয় বাস্তব ও অসমান।
253. যদি ABC = ZYX হয়, তবে GIVV = ?
TERE
TEER
TREE
FREE
ব্যাখ্যা: A (১ম) → Z (শেষের দিক থেকে ১ম) B (২য়) → Y (২য়) C (৩য়) → X (৩য়) G (৭ম)→T (৭ম) I (৯ম) → R (৯ম) V (২২তম) → E (২২তম) GIVV →TREE
254. .১×.০১ ×.০০১ = ?
১.০০০১
.১০০০১
.০০০০১
.০০০০০১
ব্যাখ্যা: .১×.০১ ×.০০১ =১/১০× ১/১০০× ১/১০০০ = ১/১০০০০০০ = ০.০০০০০১
255. P = {x: x, 12 এর গুণনীয়কসমূহ) এবং Q = (x: x, 3 এর গুণিতক এবং x ≤12) হলে, P-Q কত?
{1,2,4)
{1,3,4)
{1,3,6)
{1,2,6)
ব্যাখ্যা: এখানে, P = {1, 2, 3, 4, 6, 12} আবার, Q = {3, 6, 9, 12) [যেহেতু x ≤12] .: P-Q= {1, 2, 3, 4, 6, 12)-(3, 6, 9, 12) = {1, 2, 4)
256. ৬ জন খেলোয়াড়কে সমান সংখ্যক দুইটি দলে কত ভাবে বিভক্ত করা যায়?
১০
২০
৬০
১২০
ব্যাখ্যা: প্রতি দলে ৩ জন খেলোয়ার নিয়ে মোট বিভক্ত করা যায় = (২×৩)! /(৩!)২ =৬!/ (৬)২ = " ৬×৫×৪×৩×২/৩৬ " = ২০ উপায়ে
258. যদি চ×G = 82 হয় তবে J×ট = ?
১২০
৯২
১১৫
১১০
ব্যাখ্যা: চ×G = ৪২ হলে উত্তর হবে (ঘ) ১১০ চ×G = ৪২ [যেখানে চ বাংলা ব্যঞ্জনবর্ণের ৬ষ্ঠ বর্ণ এবং G ইংরেজী বর্ণমালার ৭ম বর্ণ] তাই, চ×G = ৬× ৭ = ৪২] এখন, J × ট = ১০ × ১১ = ১১০ .. সঠিক উত্তর হবে (ঘ) ১১০।
259. 3x-2>2x-1 এর সমাধান সেট কোনটি?
[1, ∞)
(1, ∞)
(1/2,∞)
[-1, ∞)
ব্যাখ্যা: 3x-2>2x-1 3x-2x2-1 ⇒x>1 নির্ণেয় সমাধান সেট: (1, ∞)
260. একজন ব্যক্তি ভ্রমণে ৪ মাইল উত্তরে, ১২ মাইল পূর্বে, তারপর আবার ১২ মাইল উত্তরে যায়। সে শুরুর স্থান থেকে কত মাইল দূরে?
১৭
২৮
২১
২০
ব্যাখ্যা: